FURTHER MATHEMATICS/MATHEMATICS (ELECTIVE)

AIMS OF THE SYLLABUS

The aims of the syllabus are to test candidates’

(i) development of further conceptual and manipulative skills in Mathematics;

(ii) understanding of an intermediate course of study which bridges the gap between Elementary Mathematics and Higher Mathematics;

(iii) acquisition of aspects of Mathematics that can meet the needs of potential Mathematicians, Engineers, Scientists and other professionals.

(iv) ability to analyse data and draw valid conclusion

(v) logical, abstract and precise reasoning skills.

EXAMINATION SCHEME

There will be two papers, Papers 1 and 2, both of which must be taken.

PAPER 1: will consist of forty multiple-choice objective questions, covering the entire syllabus. Candidates will be required to answer all questions in 1 hour 20 minutes for 40 marks. The questions will be drawn from the sections of the syllabus as follows:

<table>
<thead>
<tr>
<th>Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Mathematics</td>
<td>30</td>
</tr>
<tr>
<td>Statistics and probability</td>
<td>4</td>
</tr>
<tr>
<td>Vectors and Mechanics</td>
<td>6</td>
</tr>
</tbody>
</table>

PAPER 2: will consist of two sections, Sections A and B, to be answered in 2 hours 10 minutes for 100 marks.

Section A will consist of eight compulsory questions that are elementary in type for 48 marks. The questions shall be distributed as follows:

<table>
<thead>
<tr>
<th>Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>Statistics and Probability</td>
<td>2</td>
</tr>
<tr>
<td>Vectors and Mechanics</td>
<td>2</td>
</tr>
</tbody>
</table>
Section B will consist of seven questions of greater length and difficulty put into three parts: Parts I, II and III as follows:

Part I: Pure Mathematics - 3 questions
Part II: Statistics and Probability - 2 questions
Part III: Vectors and Mechanics - 2 questions

Candidates will be required to answer four questions with at least one from each part for 52 marks.

DETAILED SYLLABUS

In addition to the following topics, more challenging questions may be set on topics in the General Mathematics/Mathematics (Core) syllabus.

In the column for CONTENTS, more detailed information on the topics to be tested is given while the limits imposed on the topics are stated under NOTES.

Topics which are marked with asterisks shall be tested in Section B of Paper 2 only.

KEY:

* Topics peculiar to Ghana only.

** Topics peculiar to Nigeria only

<table>
<thead>
<tr>
<th>Topics</th>
<th>Content</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Pure Mathematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Sets</td>
<td>(i) Idea of a set defined by a property, Set notations and their meanings.</td>
<td>(x : x is real), ∪, ∩, {}, ∈, ⊆, ⊂, ⊆, U (universal set) and A’ (Complement of set A).</td>
</tr>
<tr>
<td></td>
<td>(ii) Disjoint sets, Universal set and complement of set</td>
<td>More challenging problems involving union, intersection, the universal set, subset and complement of set.</td>
</tr>
<tr>
<td></td>
<td>(iii) Venn diagrams, Use of sets And Venn diagrams to solve problems.</td>
<td>Three set problems. Use of De Morgan’s laws to solve related problems</td>
</tr>
<tr>
<td></td>
<td>(iv) Commutative and Associative laws, Distributive properties over union and intersection.</td>
<td>All the four operations on</td>
</tr>
<tr>
<td>(3) Binary Operations</td>
<td>Surds of the form $\frac{a}{\sqrt{b}}$, $a\sqrt{b}$ and $a+b\sqrt{n}$ where a is rational, b is a positive integer and n is not a perfect square. Properties: Closure, Commutativity, Associativity and Distributivity, Identity elements and inverses.</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>(4) Logical Reasoning</td>
<td>(i) Rule of syntax: true or false statements, rule of logic applied to arguments, implications and deductions. (ii) The truth table</td>
<td></td>
</tr>
<tr>
<td>(5) Functions</td>
<td>(i) Domain and co-domain of a function. (ii) One-to-one, onto, identity and constant mapping; (iii) Inverse of a function.</td>
<td></td>
</tr>
<tr>
<td>(6) Polynomial Functions</td>
<td>(i) Linear Functions, Equations and Inequality</td>
<td></td>
</tr>
</tbody>
</table>

Rationalising the denominator of surds such as $\frac{a}{\sqrt{b}}$, $\frac{a+b\sqrt{c}}{\sqrt{d}}$, $a+b\sqrt{c}-\sqrt{d}$. Use of properties to solve related problems.

Using logical reasoning to determine the validity of compound statements involving implications and connectivities. Include use of symbols: $\sim P$, $P \lor Q$, $P \land Q$, $P \Rightarrow Q$. Use of Truth tables to deduce conclusions of compound statements. Include negation.

The notation e.g. $f: x \rightarrow 3x+4$; $g : x \rightarrow x^2$; where $x \in \mathbb{R}$. Graphical representation of a function; Image and the range.

Determination of the inverse of a one-to-one function e.g. If $f: x \rightarrow sx + \frac{4}{3}$, the inverse relation $f^{-1}: x \rightarrow \frac{1}{3}x - \frac{4}{9}$ is also a function. Notation: $f \circ g(x) = f(g(x))$ Restrict to simple algebraic functions only.

Recognition and sketching of graphs of linear functions and equations. Gradient and intercepts forms of linear equations i.e. $ax + by + c = 0$; $y = mx + c$.
(ii) Quadratic Functions, Equations and Inequalities

\[\frac{y}{a} + \frac{x}{b} = k. \]
Parallel and Perpendicular lines. Linear Inequalities e.g. \(2x + 5y \leq 1, \ x + 3y \geq 3 \)
Graphical representation of linear inequalities in two variables. Application to Linear Programming.

Recognition and sketching graphs of quadratic functions e.g.
f: \(x \rightarrow ax^2 + bx + c \), where \(a, b \) and \(c \in \mathbb{R} \).
Identification of vertex, axis of symmetry, maximum and minimum, increasing and decreasing parts of a parabola.
Include values of \(x \) for which \(f(x) > 0 \) or \(f(x) < 0 \).

Solution of simultaneous equations: one linear and one quadratic. Method of completing the squares for solving quadratic equations.
Express \(f(x) = ax^2 + bx + c \) in the form \(f(x) = a(x + d)^2 + k \), where \(k \) is the maximum or minimum value. Roots of quadratic equations – equal roots \((b^2 - 4ac = 0) \), real and unequal roots \((b^2 - 4ac > 0) \), imaginary roots \((b^2 - 4ac < 0) \); sum and product of roots of a quadratic equation e.g. if the roots of the equation \(3x^2 + 5x + 2 = 0 \) are \(\alpha \) and \(\beta \), form the equation whose roots are \(\frac{1}{\alpha} \) and \(\frac{1}{\beta} \). Solving quadratic inequalities.

(ii) Cubic Functions and Equations

Recognition of cubic functions e.g. f: \(x \rightarrow ax^3 + bx^2 + cx + d \).
Drawing graphs of cubic functions for a given range.
Factorization of cubic expressions and solution of cubic equations. Factorization of \(a^3 \pm b^3 \). Basic operations on
(7) Rational Functions

(i) Rational functions of the form
\[Q(x) = \frac{f(x)}{g(x)}, g(x) \neq 0. \]
where \(g(x) \) and \(f(x) \) are polynomials. e.g.
\[f: x \rightarrow \frac{ax+b}{px^2+qx+r} \]

(ii) Resolution of rational functions into partial fractions.

(8) Indices and Logarithmic Functions

(i) Indices

Laws of indices.
Application of the laws of indices to evaluating products, quotients, powers and nth root.
Solve equations involving indices.

(ii) Logarithms

Laws of Logarithms.
Application of logarithms in calculations involving product, quotients, power (\(\log a^n \)), nth roots (\(\log \sqrt[a]{a} \), \(\log a^{1/n} \)).
Solve equations involving logarithms (including change of base).
Reduction of a relation such as \(y = ax^b \), \((a, b \) are constants) to a linear form:
\[\log_{10}y = b \log_{10}x + \log_{10}a. \]
Consider other examples such as...
<table>
<thead>
<tr>
<th>Source: Naijaeduinfo.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutation and Combinations.</td>
</tr>
<tr>
<td>(i) Simple cases of arrangements</td>
</tr>
<tr>
<td>(ii) Simple cases of selection of objects.</td>
</tr>
<tr>
<td>Expansion of ((a + b)^n). Use of ((1+x)^n \approx 1+nx) for any rational (n), where (x) is sufficiently small. e.g ((0.998)^{1/3})</td>
</tr>
<tr>
<td>Binomial Theorem</td>
</tr>
<tr>
<td>Sequences and Series</td>
</tr>
<tr>
<td>(i) Finite and Infinite sequences.</td>
</tr>
<tr>
<td>(ii) Linear sequence/Arithmetic Progression (A.P.) and Exponential sequence/Geometric Progression (G.P.)</td>
</tr>
<tr>
<td>(iii) Finite and Infinite series.</td>
</tr>
<tr>
<td>(iv) Linear series (sum of A.P.) and exponential series (sum of G.P.)</td>
</tr>
<tr>
<td>Use of the binomial theorem for positive integral index only. Proof of the theorem not required.</td>
</tr>
<tr>
<td>Knowledge of arrangement and selection is expected. The notations: (^nC_r), (^nP_r) for selection and arrangement respectively should be noted and used. e.g. arrangement of students in a row, drawing balls from a box with or without replacements.</td>
</tr>
<tr>
<td>(nPr = \frac{n!}{(n-r)!})</td>
</tr>
<tr>
<td>(nCr = \frac{n!}{r!(n-r)!})</td>
</tr>
<tr>
<td>e.g. (i) (u_1, u_2, ..., u_n). (ii) (u_1, u_2,)</td>
</tr>
<tr>
<td>Recognizing the pattern of a sequence. e.g. (i) (U_n = U_1 + (n-1)d), where (d) is the common difference. (ii) (U_n = U_1 r^{n-1}) where (r) is the common ratio.</td>
</tr>
<tr>
<td>(i) (U_1 + U_2 + U_3 + ... + U_n) (ii)(U_1 + U_2 + U_3 +)</td>
</tr>
<tr>
<td>(S_n = \frac{n}{2}(U_1+U_n))</td>
</tr>
<tr>
<td>(S_n = \frac{n}{2}[2a + (n - 1)d])</td>
</tr>
</tbody>
</table>
Matrices and Linear Transformation

<table>
<thead>
<tr>
<th>(i) Matrices</th>
<th>(ii) Determinants</th>
<th>(iii) Inverse of 2 x 2 Matrices</th>
<th>(iv) Linear Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>*(v) Recurrence Series</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(iii) \(S_n = U_1 (1 - r^n) \) , \(r < 1 \)

(iv) \(S_n = U_1 (r^n - 1) \) , \(r > 1 \)

(v) Sum to infinity (S) = \(\frac{a}{1 - r} \) \(r < 1 \)

Generating the terms of a recurrence series and finding an explicit formula for the sequence e.g. 0.9999 = \(\frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^3} + \frac{9}{10^4} + \ldots \)

Concept of a matrix – state the order of a matrix and indicate the type.

Equal matrices – If two matrices are equal, then their corresponding elements are equal. Use of equality to find missing entries of given matrices

Addition and subtraction of matrices (up to 3 x 3 matrices).

Multiplication of a matrix by a scalar and by a matrix (up to 3 x 3 matrices)

Evaluation of determinants of 2 x 2 matrices.

**Evaluation of determinants of 3 x 3 matrices.

Application of determinants to solution of simultaneous linear equations.

e.g. If \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), then \(A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \)

Finding the images of points under given linear transformation
Trigonometry

(i) Trigonometric Ratios and Rules

- Determining the matrices of given linear transformation.
- Finding the inverse of a linear transformation (restrict to 2 x 2 matrices).
- Finding the composition of linear transformation.
- Recognizing the Identity transformation.
 1. \[
 \begin{pmatrix}
 1 & 0 \\
 0 & -1
 \end{pmatrix}
 \] reflection in the x-axis
 2. \[
 \begin{pmatrix}
 -1 & 0 \\
 0 & 1
 \end{pmatrix}
 \] reflection in the y-axis
 3. \[
 \begin{pmatrix}
 0 & 1 \\
 1 & 0
 \end{pmatrix}
 \] reflection in the line \(y = x \)
 4. \[
 \begin{pmatrix}
 \cos \theta & -\sin \theta \\
 \sin \theta & \cos \theta
 \end{pmatrix}
 \] for anti-clockwise rotation through \(\theta \) about the origin.
 5. \[
 \begin{pmatrix}
 \cos 2\theta & \sin 2\theta \\
 \sin 2\theta & -\cos 2\theta
 \end{pmatrix}
 \] the general matrix for reflection in a line through the origin making an angle \(\theta \) with the positive x-axis.

Finding the equation of the image of a line under a given linear transformation

Sine, Cosine and Tangent of general angles (0° ≤ θ ≤ 360°).
- Identify trigonometric ratios of angles 30°, 45°, 60° without use of tables.
- Use basic trigonometric ratios and reciprocals to prove given trigonometric identities.
- Evaluate sine, cosine and tangent of negative angles.
- Convert degrees into radians and vice versa.
- Application to real life situations such as heights and distances, perimeters, solution of triangles, angles of elevation and depression, bearing (negative and positive angles) including use of sine
| **(14) Co-ordinate Geometry** | **Angles.** | and cosine rules, etc, Simple cases only.

\[
sin (A \pm B), \cos (A \pm B), \tan(A \pm B).
\]

Use of compound angles in simple identities and solution of trigonometric ratios e.g. finding \(\sin 75^\circ \), \(\cos 150^\circ \) etc, finding \(\tan 45^\circ \) without using mathematical tables or calculators and leaving your answer as a surd, etc.

Use of simple trigonometric identities to find trigonometric ratios of compound and multiple angles (up to 3A).

| **(i) Straight Lines** | **(iii) Trigonometric Functions and Equations** | Relate trigonometric ratios to Cartesian Coordinates of points \((x, y)\) on the circle \(x^2 + y^2 = r^2\).
\[
f: x \rightarrow \sin x,
g: x \rightarrow a \cos x + b \sin x = c.
\]

Graphs of sine, cosine, tangent and functions of the form \(a\sin x + b\cos x\). Identifying maximum and minimum point, increasing and decreasing portions. Graphical solutions of simple trigonometric equations e.g. \(a\sin x + b\cos x = k\). Solve trigonometric equations up to quadratic equations e.g. \(2\sin^2 x - \sin x - 3 = 0\), for \(0^\circ \leq x \leq 360^\circ\).

*Express \(f(x) = a\sin x + b\cos x\) in the form \(R\cos (x \pm \alpha)\) or \(R\sin (x \pm \alpha)\) for \(0^\circ \leq \alpha \leq 90^\circ\) and use the result to calculate the minimum and maximum points of a given functions.

| | | Mid-point of a line segment Coordinates of points which divides a given line in a given |
Differentiation

(ii) Conic Sections

(i) The idea of a limit

(ii) The derivative of a function

Distance between two points; Gradient of a line;
Equation of a line:
 (i) Intercept form;
 (ii) Gradient form;
Conditions for parallel and perpendicular lines.
Calculate the acute angle between two intersecting lines
e.g. if m_1 and m_2 are the gradients of two intersecting lines, then $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$. If
$m_1 m_2 = -1$, then the lines are perpendicular.

*The distance from an external point $P(x_1, y_1)$ to a given line
$ax + by + c$ using the formula
\[d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}. \]

Loci of variable points which move under given conditions
Equation of a circle:
 (i) Equation in terms of centre, (a, b), and radius, r,
 \[(x - a)^2 + (y - b)^2 = r^2; \]
 (ii) The general form:
 \[x^2 + y^2 + 2gx + 2fy + c = 0, \]
 where $(-g, -f)$ is the centre and
 \[r = \sqrt{a^2 + b^2 - c}. \]
Tangents and normals to circles
Equations of parabola in rectangular Cartesian coordinates ($y^2 = 4ax$, include parametric equations (at^2, at)).
Finding the equation of a tangent and normal to a parabola at a given point.
*Sketch graphs of given parabola and find the equation of the axis of symmetry.

(i) Intuitive treatment of limit.

Source: Naijaeduinfo.com
<p>| (iii) Differentiation of polynomials | Relate to the gradient of a curve. e.g. $f''(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. |
| (iv) Differentiation of trigonometric Functions | (ii) Its meaning and its determination from first principles (simple cases only). e.g. $a x^n + b$, $n \leq 3$, $n \in I$ |
| (v) Product and quotient rules. Differentiation of implicit functions such as $a x^2 + by^2 = c$ | e.g. $ax^n - bx^{m-1} + ... + k$, where $m \in I$, k is a constant. |
| (vi) Differentiation of Transcendental Functions | e.g. $\sin x$, $y = a \sin x \pm b \cos x$. Where a, b are constants. |
| (vii) Second order derivatives and Rates of change and small changes (Δx), Concept of Maxima and Minima | including polynomials of the form $(a + bx^n)^m$. |
| (i) Indefinite Integral | e.g. $y = e^{ax}$, $y = \log 3x$, $y = \ln x$ |
| (i) The equation of a tangent to a curve at a point. | (i) Integration of polynomials of the form ax^n: $n \neq -1$. i.e. $\int x^n , dx = \frac{x^{n+1}}{n+1} + c$, $n \neq -1$. |
| (ii) Definite Integral | (ii) Integration of sum and difference of polynomials. e.g. $\int (4x^3 + 3x^2 - 6x + 5) , dx$ |
| (iii) Applications of the Definite Integral | (iii) Integration of |</p>
<table>
<thead>
<tr>
<th>II. Statistics and Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17) Statistics</td>
</tr>
<tr>
<td>(i) Tabulation and Graphical representation of data</td>
</tr>
<tr>
<td>(ii) Measures of location</td>
</tr>
<tr>
<td>(iii) Measures of Dispersion</td>
</tr>
<tr>
<td>(iv) Correlation</td>
</tr>
<tr>
<td>(18) Probability</td>
</tr>
</tbody>
</table>

Statistics

- **(i) Tabulation and Graphical representation of data**
- **(ii) Measures of location**
- **(iii) Measures of Dispersion**
- **(iv) Correlation**

Probability

- **(i) Range, Inter-Quartile and Semi inter-quartile range from an Ogive.**

Additional Topics

- **Polynomials of the form** $ax^n; n = -1.$
 - i.e. $\int x^{-1} \, dx = \ln x$

- **Simple problems on integration by substitution.**
- **Integration of simple trigonometric functions of the form** $\int_a^b \sin x \, dx.$

- **Plane areas and Rate of Change. Include linear kinematics.**
 - Relate to the area under a curve.

- **Volume of solid of revolution**

- **Approximation restricted to trapezium rule.**

- **Frequency tables.**
 - Cumulative frequency tables.
 - Histogram (including unequal class intervals).
 - Cumulative frequency curve (Ogive) for grouped data.

- **Central tendency:** mean, median, mode, quartiles and percentiles.
- **Mode and modal group for grouped data from a histogram.**
- **Median from grouped data.**
- **Mean for grouped data (use of an assumed mean required).**

Source: Naijaeduinfo.com
III. Vectors and Mechanics

Vectors

1. Meaning of probability.
2. Relative frequency.
4. Addition and multiplication of probabilities.
5. Probability distributions.

(i) Definitions of scalar and vector Quantities.

- **(ii) Representation of Vectors.**
- **(iii) Algebra of Vectors.**
- **(iv) Commutative, Associative and Distributive Properties.**

(ii) Mean deviation, variance and standard deviation for grouped and ungrouped data. Using an assumed mean or true mean.

- Scatter diagrams, use of line of best fit to predict one variable from another, meaning of correlation; positive, negative and zero correlations, Spearman's Rank coefficient.
- Use data without ties.
- *Equation of line of best fit by least square method. (Line of regression of y on x).*

Tossing 2 dice once; drawing from a box with or without replacement.

- Equally likely events, mutually exclusive, independent and conditional events.
- Include the probability of an event considered as the probability of a set.

(i) Binomial distribution

\[P(x=r) = \binom{n}{r} p^r q^{n-r} \]

- Probability of success = p, Probability of failure = q, p + q = 1 and n is the number of trials. Simple problems only.

(ii) Poisson distribution

\[P(x) = \frac{e^{-\lambda} \lambda^x}{x!} \]

- Where \(\lambda = np \), n is large and p is small.
<table>
<thead>
<tr>
<th>(v) Unit vectors.</th>
<th>Representation of vector (\mathbf{\hat{a}}) in the form (a\mathbf{i} + b\mathbf{j}).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(vii) Resolution and Composition of Vectors.</td>
<td>Illustrate through diagram, Illustrate by solving problems in elementary plane geometry e.g. concurrency of medians and diagonals.</td>
</tr>
<tr>
<td>(viii) Scalar (dot) product and its application.</td>
<td>The notation: (\mathbf{i}) for the unit vector (\begin{pmatrix} 1 \ 0 \end{pmatrix}) and (\mathbf{j}) for the unit vector (\begin{pmatrix} 0 \ 1 \end{pmatrix}) along the x and y axes respectively. Calculation of unit vector (\mathbf{\hat{a}}) along a i.e. (\mathbf{\hat{a}} = \frac{a}{</td>
</tr>
<tr>
<td>(ix) Vector (cross) product and its application.</td>
<td>Position vector of A relative to O is (\overrightarrow{OA}). Position vector of the midpoint of a line segment. Relate to coordinates of mid-point of a line segment. *Position vector of a point that divides a line segment internally in the ratio (\lambda : \mu). Applying triangle, parallelogram and polygon laws to composition of forces acting at a point. e.g. find the resultant of two forces (12N, 20N).</td>
</tr>
</tbody>
</table>

Statics

(20)
Dynamics

1. Definition of a force.
2. Representation of forces.
3. Composition and resolution of coplanar forces acting at a point.
4. Composition and resolution of general coplanar forces on rigid bodies.
5. Equilibrium of Bodies.
6. Determination of Resultant.
7. Moments of forces.
8. Friction.

Equations of Motion

(i) The concepts of motion

(ii) Equations of Motion

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>030° and $(8N, 100^\circ)$ acting at a point.</td>
<td>Find the resultant of vectors by scale drawing.</td>
</tr>
<tr>
<td>Finding angle between two vectors.</td>
<td>Using the dot product to establish such trigonometric formulae as</td>
</tr>
<tr>
<td>$\cos (a \pm b) = \cos a \cos b \mp \sin a \sin b$</td>
<td>(i) $\cos (a \pm b) = \cos a \cos b \mp \sin a \sin b$</td>
</tr>
<tr>
<td>$\sin (a \pm b) = \sin a \cos b \pm \sin b \cos a$</td>
<td>(ii) $\sin (a \pm b) = \sin a \cos b \pm \sin b \cos a$</td>
</tr>
<tr>
<td>$c^2 = a^2 + b^2 - 2ab \cos C$</td>
<td>(iii) $c^2 = a^2 + b^2 - 2ab \cos C$</td>
</tr>
<tr>
<td>$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$</td>
<td>(iv) $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$</td>
</tr>
</tbody>
</table>

Apply to simple problems e.g. suspension of particles by strings.

Resultant of forces, Lami’s theorem

Using the principles of moments to solve related problems.

Source: Naijaeduinfo.com
(iii) The impulse and momentum equations:

**(iv) Projectiles.

Distinction between smooth and rough planes.
Determination of the coefficient of friction.

The definitions of displacement, velocity, acceleration and speed.
Composition of velocities and accelerations.

Rectilinear motion.
Newton’s laws of motion.
Application of Newton's Laws
Motion along inclined planes (resolving a force upon a plane into normal and frictional forces).
Motion under gravity (ignore air resistance).
Application of the equations of motions: \(V = u + at \), \(S = ut + \frac{1}{2} at^2 \), \(v^2 = u^2 + 2as \).

Conservation of Linear Momentum(exclude coefficient of restitution).
Distinguish between momentum and impulse.

Objects projected at an angle to the horizontal.

1. **UNITS**
 Candidates should be familiar with the following units and their symbols.

 (1) **Length**
 1000 millimetres (mm) = 100 centimetres (cm) = 1 metre (m).
 1000 metres = 1 kilometre (km)

 Source: Naijaeduinfo.com
(2) **Area**
10,000 square metres (m²) = 1 hectare (ha)

(3) **Capacity**
1000 cubic centimeters (cm³) = 1 litre (l)

(4) **Mass**
1000 milligrammes (mg) = 1 gramme (g)
1000 grammes (g) = 1 kilogramme (kg)
1000 kilogrammes (kg) = 1 tonne.

(5) **Currencies**

<table>
<thead>
<tr>
<th>Country</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Gambia</td>
<td>100 bututs (b) = 1 Dalasi (D)</td>
</tr>
<tr>
<td>Ghana</td>
<td>100 Ghana pesewas (Gp) = 1 Ghana Cedi (GH¢)</td>
</tr>
<tr>
<td>Liberia</td>
<td>100 cents (c) = 1 Liberian Dollar (LD)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>100 kobo (k) = 1 Naira (₦)</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>100 cents (c) = 1 Leone (Le)</td>
</tr>
<tr>
<td>UK</td>
<td>100 pence (p) = 1 pound (£)</td>
</tr>
<tr>
<td>USA</td>
<td>100 cents (c) = 1 dollar ($)</td>
</tr>
</tbody>
</table>

French Speaking territories: 100 centimes (c) = 1 Franc (fr)
Any other units used will be defined.

2. **OTHER IMPORTANT INFORMATION**

(1) **Use of Mathematical and Statistical Tables**
Mathematics and Statistical tables, published or approved by WAEC may be used in the examination room. Where the degree of accuracy is not specified in a question, the degree of accuracy expected will be that obtainable from the mathematical tables.

(2) **Use of calculators**
The use of non-programmable, silent and cordless calculators is allowed. The calculators must, however not have a paper print out nor be capable of receiving/sending any information. Phones with or without calculators are not allowed.

(3) **Other Materials Required for the examination**
Candidates should bring rulers, pairs of compasses, protractors, set squares etc required for papers of the subject. They will not be allowed to borrow such instruments and any other material from other candidates in the examination hall.

Source: Naijaeduinfo.com
Graph papers ruled in 2mm squares will be provided for any paper in which it is required.

(4) Disclaimer
In spite of the provisions made in paragraphs 2 (1) and (2) above, it should be noted that some questions may prohibit the use of tables and/or calculators.

Source: https://www.naijaeduinfo.com

Click www.naijaeduinfo.com/waec-syllabus To Get WAEC Syllabus For Other Subjects