BASIC ELECTRONICS/ ELECTRONICS

PREAMBLE

The syllabus is intended to equip candidates with broad understanding of the technology of manufacturing, maintenance and repair of domestic and industrial equipment. It will also offer candidates sufficient knowledge and skills to form valuable foundation for electronic-related vocation or pursue further educational qualifications.

Candidates will be expected to cover all the topics.

OBJECTIVES

The objective of the syllabus is to test candidates’

(1) knowledge and understanding of the basic concepts and principles of electronics;
(2) ability to use simple electronic devices to build and test simple electronic systems;
(3) problem-solving skills through the use of the design process;
(4) preparedness for further work in electronics;
(5) knowledge in entrepreneurial skills and work ethics.

SCHEME OF EXAMINATION

There will be three papers, Papers 1, 2 and 3, all of which must be taken. Papers 1 and 2 shall be composite paper to be taken at one sitting.

PAPER 1: will consist of fifty multiple-choice objective questions all of which are to be answered in 1 hour for 50 marks.

PAPER 2: will consist of seven short-structured questions. Candidates will be required to answer any five in 1 hour for 50 marks.

PAPER 3: will be a practical paper of two experiments both of which are to be carried out by candidates in 3 hours for 100 marks.

Alternative to Practical Test

Alternatively, in the event that materials for the actual practical test cannot be acquired, the Council may consider testing theoretically, candidates’ level of acquisition of the practical skills prescribed in the syllabus. For this alternative test, there will be two compulsory questions to be answered within 2 hours for 100 marks.

Source: Naijaeduinfo.com
DETAILED SYLLABUS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>NOTES</th>
</tr>
</thead>
</table>
| **1. ELECTRON EMISSION**
Types of electron emission
Application of electron emission | Qualitative treatment should include:
Thermionic emission; photoemission; secondary emission and field emission.
Relate it to diode, triode, tetrode, pentode, and cathode ray tube. |
| **2. MEASURING INSTRUMENTS**
Concepts of measuring instrument
Principles of operation and protection of measuring instruments | Qualitative treatment only which should include:
Classification – analogue and digital
Types and uses of multimeter, voltmeter, ammeter, ohmmeter, oscilloscope etc. |
| **3. SEMICONDUCTOR**
Concepts of semiconductor
Semiconductor materials (silicon, germanium etc.)
Doping
Formation of p-type and n-type semiconductors.
SEMICONDUCTOR DIODES
Concept of diodes
Biasing of diodes | Qualitative treatment only.
Treatment should include operational principles of diodes
Type of diodes
Diode ratings – voltage, current and power
Application of diodes
Construction of a simple circuit using a P-N junction diode
Practical demonstration of I-V characteristics of P-N junction diode in the forward and reverse bias modes. |
| **TRANSISTORS**
Concepts of transistor | Meaning of transistor, biasing of transistor,
Uses and advantages.
BJT characteristics
Advantages of transistor over valves
Advantages of MOSFET over BJT |

Source: Naijaeduinfo.com
<table>
<thead>
<tr>
<th>OTHER SEMICONDUCTOR DEVICES</th>
<th>Formation, function and principles of Operation. Transistor as a switch, inverter, an amplifier Verification of BJT characteristics. Input, output and transfer characteristics Transfer configuration Qualitative treatment only – formation, functions and principles of operation Advantages over discrete components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermistor, diac, triac and thyristor, etc</td>
<td>Circuit symbols Principles of operation Applications.</td>
</tr>
<tr>
<td>INTEGRATED CIRCUITS</td>
<td>Application of integrated circuits Explanation of RAM, ROM and EPROM</td>
</tr>
<tr>
<td>4. CIRCUIT ANALYSIS</td>
<td>Qualitative treatment only Uses of conductors and insulators Differences between direct and alternating current</td>
</tr>
<tr>
<td>ELECTRIC CURRENT</td>
<td>Construction of simple circuit to demonstrate Ohm’s law</td>
</tr>
<tr>
<td>Structure of atom</td>
<td>Qualitative and quantitative treatments</td>
</tr>
<tr>
<td>Conductors and insulators</td>
<td></td>
</tr>
<tr>
<td>Direct and alternating current</td>
<td></td>
</tr>
<tr>
<td>Sources of direct current</td>
<td></td>
</tr>
<tr>
<td>Sources of alternating current</td>
<td></td>
</tr>
<tr>
<td>RELATIONSHIP BETWEEN VOLTAGE, CURRENT AND RESISTANCE</td>
<td></td>
</tr>
<tr>
<td>Current, voltage and resistance. Ohm’s law Simple calculation of current, voltage and resistance.</td>
<td></td>
</tr>
<tr>
<td>ELECTRIC POWER</td>
<td></td>
</tr>
<tr>
<td>Concept of electric power Relationship between power, current and voltage. Other formulae for finding electrical power Calculation of electric power in a given circuit</td>
<td></td>
</tr>
</tbody>
</table>
CIRCUIT COMPONENTS
Types of resistors, capacitors and inductors
Symbols, signs and unit of measurement
Colour coding and rating of resistors and capacitors

ELECTRIC CIRCUIT
Electric circuit
Circuit boards
Circuit arrangement: series, parallel, series-parallel
Calculation on circuit arrangement

ALTERNATING CURRENT CIRCUITS
R-L-C circuits

Practical determination of the value of a fixed colour code resistor

Carry out practical wiring of different circuit arrangement

Generator principles

Qualitative and quantitative treatments should include
- Concepts of capacitive reactance, inductive reactance and impedance
- RL and RC circuits
- Calculations of capacitive reactance \((X_C) \) and inductive reactance \((X_L) \)
- Resonance frequency

Principles of operation of an a.c. generator

Qualitative and quantitative treatments of
- Power and power triangle
- Power factor and its correction
- Advantages and disadvantages of power factor correction
- Calculation of power factor
- Q-factor and bandwidth

5. AMPLIFIERS

VOLTAGE AMPLIFIERS

Biasing methods. Treatment of the transistor as single stage.
Common-emitter amplifier.
Frequency response of an amplifier
Advantages and disadvantages of negative feedback

POWER AMPLIFIERS

Classification: Class A, Class B, Class AB,
Class C, application, power gain, methods of
| **PUSH-PULL AMPLIFIERS** | biasing and efficiency.
Classification of power gain. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATIONAL AMPLIFIERS</td>
<td>Qualitative treatment including matched and complementary pairs.</td>
</tr>
<tr>
<td></td>
<td>Properties of an ideal operational amplifier</td>
</tr>
<tr>
<td></td>
<td>Inverting and non-inverting operational amplifiers(op-amps)</td>
</tr>
<tr>
<td></td>
<td>Types of operational amplifiers</td>
</tr>
<tr>
<td></td>
<td>Applications of op-amps</td>
</tr>
<tr>
<td></td>
<td>Simple calculations involving inverting, non-inverting, summing amplifiers and voltage follower</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. POWER SUPPLY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. POWER SUPPLY UNIT</td>
<td>Dry cells, solar cells, cadmium cells, accumulators</td>
</tr>
<tr>
<td></td>
<td>Batteries: Rechargeable and non-rechargeable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. OSCILLATORS, MULTIVIBRATORS AND DIGITAL BASICS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCILLATORS</td>
<td>Difference between positive feedback(oscillator) and negative feedback (amplifier)</td>
</tr>
<tr>
<td></td>
<td>Principles of an oscillator</td>
</tr>
<tr>
<td></td>
<td>Types of oscillators: Hartley, Colpitts, phase shift, tuned (load and crystal) oscillators</td>
</tr>
<tr>
<td></td>
<td>Advantages of negative feedback</td>
</tr>
<tr>
<td></td>
<td>Calculations involving negative feedbacks</td>
</tr>
<tr>
<td></td>
<td>Block diagram of an oscillator</td>
</tr>
<tr>
<td></td>
<td>Application of oscillator</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTIVIBRATORS (Non-sinusoidal)</th>
<th>Types of multivibrators (monostable, bistable and astable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of operation and applications</td>
<td></td>
</tr>
</tbody>
</table>
DIGITAL BASICS

Number system
- Different number system e.g. binary, octal and hexadecimal
- Simple calculation in binary number
- Conversion from one base to another and vice-versa
- Addition and subtraction of binary numbers

Logic gates (Combinational)
- Qualitative treatments of AND, OR, NOT, NOR and NAND
- Logic gates using switching arrangements, truth table and Boolean expression

8. COMMUNICATION SYSTEMS, TRANSDUCERS AND SENSORS

Electromagnetic waves
- Relationship between velocity, frequency and wavelength
- Meaning of radio communication
- Modulation and demodulation
- Advantages of F.M. over A.M.
- Phase modulation (mention only)

Characteristics of radio waves

Principles of radio waves

Stages of radio receiver
- Types of radio receivers
- Advantages of superheterodyne over direct input receiver

Fault detection in radio receiver
- Use faulty radio and detect and repair fault
- Project work on construction and designing of a simple radio receiver

Transmitters and receivers
- Block diagrams of A.M. and F.M. transmitters
- Block diagrams of A.M. and F.M. superheterodyne radio receivers
- Block diagrams of mono and colour T.V. chrome receivers
- Functions of each block and direction of signal flow
- Qualitative treatment of T.V. standard (NTSC, PAL, SECAM, BIG)

Methods of Communication
- Fibre optics, microwave, satellite, cellular phone, digital communication network, etc.

Transducers and Sensors
- Meaning of transducers and sensors
- Principles of operation
- Types and uses to include: Acoustic, dynamic electrostatic, electromagnetic, capacitive, pressure sensor, photoelectric, proximity sensor etc.
- Thermistor as a temperature sensing device

Source: Naijaeduinfo.com
<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic transducer</td>
<td>Qualitative treatments only Types of acoustic transducers e.g. loudspeaker, microphone, earphone Principles of operation and function Application of acoustic transducers</td>
</tr>
<tr>
<td>Servo mechanism</td>
<td>Qualitative treatment only Types of control circuits(open and close loop) Principle of operation of open loop and close loop</td>
</tr>
<tr>
<td>Servo mechanism</td>
<td>Qualitative treatment only Meaning Principle of operation, types, uses and application e.g. in car, doors, booths etc.</td>
</tr>
<tr>
<td>Magnetic and Electric Fields, Electromagnetic Induction/Transformers</td>
<td>Trace magnetic lines of force current-carrying conductor Lenz’s and Faraday’s laws.</td>
</tr>
<tr>
<td>Electromagnetic field</td>
<td>Definitions only Calculations involving energy stored in a coil Applications of electromagnetism Electric bell, solenoid, loudspeaker, buzzer, moving-coil instrument, moving-iron instrument, earphone and microphone</td>
</tr>
<tr>
<td>Electromagnetic induction</td>
<td></td>
</tr>
<tr>
<td>Self and mutual induction</td>
<td></td>
</tr>
</tbody>
</table>

Source: https://www.naijaeduinfo.com

Click www.naijaeduinfo.com/waec-syllabus To Get WAEC Syllabus For Other Subjects